Bmstr. Dipl.Ing.(FH) Markus BERGER GmbH Ingenieurkonsulent für Bauingenieurwesen rB

Schönbrunner Straße 123/2

1050 WIEN

Tel./Fax: (01) 78 64 614 Mobil: 0664/283 0 933 E-Mail: office@bmberger.at

Berechnung der Energiekennzahl

(vereinfachtes Verfahren)

JAHRES-HEIZWÄRMEBEDARF HWB_{BGF}

Bestandsgebäude

gemäß dem "Leitfaden Energietechnisches Verhalten von Gebäuden" und der OIB – Richtlinie 6

für das Wohngebäude in der

ANDREASGASSE 6

1070 WIEN

<u>Inhaltsverzeichnis</u>

1.	Aufgabenstellung	2
2.	Unterlagen, Berechnungsannahmen	2
3.	Berechnungsgrundlagen	3
4.	Bauteile	6
5.	Haustechniksystem	16
6.	Jährlicher Heizwärmebedarf	17
7.	Ergebnis	30
8.	Empfehlungen zur thermischen Verbesserung	31

1. Aufgabenstellung

Für das bestehende Mehrfamilienwohnhaus in 1070 Wien, Andreasgasse 6 ist die maßgebliche Energiekennzahl "JÄHRLICHER HEIZWÄRMEBEDARF HWB_{BGF}" in Abhängigkeit der vorhandenen baulichen Struktur, der Lüftungsart und des Haustechniksystems zu ermitteln.

Abgrenzung der thermischen Hülle

Die Berechnung der Energiekennzahl wird für die thermische Hülle des bestehenden Wohngebäudes durchgeführt. Die thermische Hülle des Gebäudes reicht von 1.0G bis zum DG über 4 Geschoße und wird nach unten durch die Decke über Erdgeschoß (Trenndecke zu Unbeheizt) und nach oben durch die Terrasse und die Dachkonstruktionen des Dachgeschoßes begrenzt.

2. Unterlagen, Berechnungsannahmen

Grundlage dieser Berechnungen bilden die zur Verfügung gestellten Planunterlagen zum Bestandsgebäude der Hausverwaltung.

3. Berechnungsgrundlagen

Alle Berechnungen und Bewertungen erfolgen unter Berücksichtigung der geltenden ÖNORMEN B 8110, B 8115, ÖNORMEN H 5056 bis H 5059 bzw. der EN 12354, und der Wiener Bauordnung unter Berücksichtigung der Wiener Bautechnikverordnung in der geltenden Fassung.

Die vorliegende Berechnung des jährlichen Heizwärmebedarfes wird gemäß den geltenden Vorschriften der OIB – Richtlinie 6 "Energieeinsparung und Wärmeschutz" unter Berücksichtigung des "Leitfaden Energietechnisches Verhalten von Gebäuden" durchgeführt.

Die Berechnung wird nach dem vereinfachten Verfahren für bestehende Gebäude nach Pkt. 4 des Leitfadens durchgeführt.

3.1 Vorbemerkungen

- Sollten Bezeichnungen im Energieausweis in der Wortwahl geringfügig von den Bezeichnungen der Planunterlagen und Erkenntnisquellen abweichen, so hat dies keinen Einfluss auf die Richtigkeit der Berechnungsergebnisse.
- Die am Energieausweis abgebildeten Bedarfswerte (Heizwärmebedarf HWB, Endenergiebedarf EEB, ...) sind Rechenwerte um verschiedene Gebäude miteinander vergleichen zu können. Je nach Nutzerverhalten (Raumtemperatur, Lüftungsverhalten, ...), Klima, Lage der Wohnung im Gebäude und weiteren Faktoren können die realen Verbrauchswerte deutlich von den Bedarfswerten abweichen.
- Massivbauten (Neubau) müssen in den ersten Jahren noch austrocknen. Der Energieverbrauch kann daher während dieser Zeit etwas höher ausfallen.
- Bei geschlossener Bauweise wird bei jenen Teilen von Feuermauern, die an beheizte Teile von Nachbargebäuden angrenzen, keine Wärmeverluste angesetzt ("beheizt" zu "beheizt").
- Für Bestandsgebäude werden keine Anforderungen an den Heizwärme- und Endenergiebedarf gestellt.
- Die GWR-Zahl und die ErstellerIn-Nr. werden nicht angegeben, da es aktuell noch kein GWR-Datenbankgesetz bzw. Energieausweisdatenbankgesetz gibt.

3.2 Eingabedaten

Die Berechnung erfolgt nach den vom Auftraggeber oder dessen Planer übermittelten Unterlagen. Bei fehlenden Unterlagen oder Angaben werden Vereinfachungen hinsichtlich der Erfassung der Gebäudegeometrie, der Bauphysik und der Haustechnik vorgenommen.

Vereinfachtes Verfahren

- Das vereinfachte Verfahren ist ausschliesslich für bestehende Gebäude anzuwenden, wobei Vereinfachungen bei der Erfassung der Gebäudegeometrie, der Bauphysik und der Haustechnik vorgenommen werden können.
- Können beispielsweise keine Angaben zu den U-Werten der Außenbauteile gemacht werden, werden die für die Bauepoche empfohlenen Defaultwerte verwendet.
- Beim vereinfachten Verfahren können beträchtliche Abweichungen zur Realität auftreten.

Bauphysik

- Werden vom Auftraggeber bauphysikalische Berechnungen zur Verfügung gestellt, werden diese übernommen.
- Die im vereinfachten Verfahren für die jeweilige Bauepoche verwendeten Default-U-Werte sind dem "Leitfaden Energietechnisches Verhalten von Gebäuden", Version 2.6, April 2007, Absatz 4.3 entnommen.
- Sofern nicht anders angegeben, wird für den n50-Luftwechsel, der sich einstellt wenn im Gebäude ein Unter- oder Überdruck von 50 Pascal herrscht, ein Wert von 1,5 h-1 angenommen. Dadurch errechnet sich ein Infiltrationsluftwechsel von 0,11 h-1. Es sei jedoch angemerkt, dass es sich hierbei um eine Berechnungsgröße handelt, die nicht mit der tatsächlichen Luftdichtheit des Gebäudes übereinstimmen muss. n50-Werte über 1,5 h-1 haben keinen Einfluss auf das Berechnungsergebnis und werden daher ebenfalls mit 1,5 h-1 angenommen.
- Bei Wohngebäuden mit Fensterlüftung wird für den Luftwechsel während der Heizperiode gemäß der ÖNORM B 8110-6 ein 0,4-facher Luftwechsel gewählt.

Haustechnik

- Bei unzureichenden Angaben werden die Haustechnik-Angaben aus dem Defaultsystem des "Leitfaden Energietechnisches Verhalten von Gebäuden", Version 2.6, April 2007, Absatz 4.4 entnommen.
- Die Referenzausstattung der Haustechnik für die Ermittlung des Grenzwertes für den Endenergiebedarf wird aus ÖNORM H 5056, Anhang A Referenzausstattung (normativ) entnommen.
- Im Fall von Wohnungsübergabestationen wird die Haustechnik, trotzdem es sich eigentlich um ein dezentrales System handelt, als zentrales System abgebildet. Somit werden die Verteilverluste außerhalb der Wohneinheiten mitberücksichtigt.
- Alle Steigleitungen sind mit einer Dämmung von mind. 1/3*DN angesetzt, da Leitungen in Schächten wie "Unterputzleitungen" zu sehen sind (ÖNORM H 5056, Abschnitt 8.3).

3.3 Erläuterungen zum Energieausweis

Die am Energieausweis abgebildeten <u>theoretischen Bedarfswerte</u> (Heizwärme<u>bedarf</u> HWB, Endenergie<u>bedarf</u> EEB, ...) sind <u>Rechenwerte, die vorrangig dazu dienen verschiedene Gebäude miteinander vergleichen zu können</u>. Je nach Nutzerverhalten (Raumtemperatur, Lüftungsverhalten, ...), realem Klima, Lage der Wohnung im Gebäude und diversen weiteren Faktoren, können die **realen Verbrauchswerte** deutlich von den fiktiven Bedarfswerten abweichen.

Als gutes Beispiel dient der Normverbrauch von Kraftfahrzeugen. Jeder weiß, dass ein KFZ, das gemäß Prüfstandsmessung z. B. 5 l Treibstoff / 100 km verbraucht, im Realbetrieb mehr und, je nach Fahrverhalten, sogar deutlich mehr Treibstoff benötigen wird. Beim Energieausweis für Gebäude ist es sehr ähnlich.

Beispielhafte Gründe dafür sind:

- Massivbauten müssen in den ersten Jahren noch austrocknen. Der Energieverbrauch kann daher während dieser Zeit etwas höher ausfallen.
- Um die Vergleichbarkeit von verschiedenen Energieausweisen gewährleisten zu können, werden diverse Eingangsdaten vereinheitlich. Diese entsprechen daher naturgemäß nur in Einzelfällen der Realität:
 - Standard-Klimadaten (Außentemperaturen, Sonneneinstrahlung, ...),
 - o standardisierte Raumtemperatur 20 °C!,
 - standardisiertes Nutzerverhalten, z. B.:
 - Lüftung und der damit zusammenhängende Wärmeverlust,
 - "innere Lasten" und "Belegungsdichte" (Wärme von Personen, Kochen, Duschen, …),
 - usw.
 - Diverse Vereinfachungen bei den haustechnischen Eingabewerten (z. B. Leitungsdämmungen und -längen und die damit zusammenhängenden Wärmeverluste, ...)
 - o usw.

Bei Mehrfamilienwohnhäusern hängt der tatsächliche Energieverbrauch stark davon ab, wo sich die Wohnung im Gebäude befindet. Wohnungen in Randlagen (Dachgeschoß, Erdgeschoß, exponierte Gebäudeecken, ...) haben immer einen höheren Energieverbrauch als Wohnungen mitten im Gebäude.

Gemäß dem Stand der Technik wird jedoch nur ein Energieausweis pro Gebäude/Gebäudezone/etc. errechnet. Dieser stellt also einen <u>Mittelwert</u> aus allen darin abgebildeten Wohnungen dar.

Auch lässt sich vom Energieverbrauch nicht direkt auf die Energiekosten schließen. Diese hängen ganz wesentlich vom Energieversorger und dessen Verrechnungsmodell ab.

Bitte daher zu bedenken, dass ein Energieausweis in erster Linie dazu dient, unterschiedliche Gebäude miteinander zu vergleichen bzw. normative, baurechtliche oder förderungstechnische Anforderungen nachweisen zu können. Er ist jedoch nicht geeignet, den realen Verbrauch oder Energiekosten in einer ausreichenden Genauigkeit zu prognostizieren.

Des Weiteren ist festzuhalten, dass im Auftrag keine Begehung des Objekts bzw. die Prüfung der örtlichen Gegebenheiten enthalten war. Der Energieausweis wurde daher auf Basis der zur Verfügung gestellten Unterlagen erstellt und ist für diese gültig. Die tatsächliche Ausführung kann mehr oder weniger stark von den Plandarstellungen abweichen.

4. Bauteile

Die wärmetechnischen Kennwerte der bestehenden Bauteile werden auf Grund der angeführten Plangrundlagen und des Baujahres anhand der Default-Werte gemäß Pkt. 4.3.1 bzw. der länderspezifischen Kennwert gemäß Pkt. 4.3.2 des Leitfaden Energietechnisches Verhalten von Gebäuden festgelegt.

Die maßgebenden Bauteile der thermischen Hülle können wie folgt zusammengefasst werden.

4.1 Wand-, Decken- und Dachaufbauten

BT1 Außenwand W1

Wärmedurchgangskoeffizient gemäß Plangrundlage

 $U = 0.44 \text{ W/m}^2\text{K}$

BT2 <u>Trennwand W3</u>

Wärmedurchgangskoeffizient gemäß Plangrundlage

 $U = 0.61 \text{ W/m}^2\text{K}$

BT3 <u>Decke gegen unbeheizte Räume D7</u>

Wärmedurchgangskoeffizient gemäß Plangrundlage

 $U = 0.37 \text{ W/m}^2\text{K}$

BT4 <u>Decke gegen Gangbereiche D6</u>

Wärmedurchgangskoeffizient gemäß Plangrundlage

 $U = 0.59 \text{ W/m}^2\text{K}$

BT5 Dachkonstruktion D13

Wärmedurchgangskoeffizient gemäß Plangrundlage

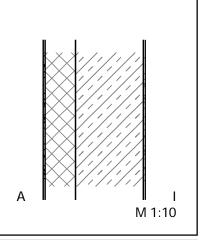
 $U = 0.22 \text{ W/m}^2\text{K}$

BT6 Blechdach D17

Wärmedurchgangskoeffizient gemäß Plangrundlage

 $U = 0.26 \text{ W/m}^2\text{K}$

OIB Richtlinie 6:2015 (ON 2015)


U-Wert von opaken Bauteilen

Objekt	VerfasserIn der Unterlagen

Auftraggeber

Andreasgasse 6, 1070 Wien

Bauteilbezeichnung				Bauteil Nr.
Außenwand				W1
Bauteiltyp				
Außenwand				AW
Wärmedurchgangskoeffizient				
U-Wert			0,44	W/m²K
	erforderlich	≤	0,35	W/m²K

Kor	nstruktionsaufbau und Berechnung								
	Baustoffschichten	ID	Fläch	Ве	d	λ	$R = d/\lambda$	ρ	ρ·d
	von außen nach innen	_	Flächenheizung	Bestand	Dicke	Leitfähigkeit	Durchlassw.	Dichte	Flächengew
Nr	Bezeichnung	kurz	zung		m	W/m K	m²K/W	kg/m³	kg/m²
1	Systemputz	WSK			0,0050	0,700	0,007	1.200,0	6,0
2	EPS - F	WSK			0,0800	0,040	2,000	17,0	1,3
3	Stahlbeton-Wand	WSK			0,1800	2,300	0,078	2.400,0	432,0
4	Spachtelung	WSK			0,0050	1,400	0,004	2.100,0	10,5
	ke des Bauteils				0,270				T
Flä	chenbezogene Masse des Bauteils								449,8
Sur	nme der Wärmedurchlasswiderstände	ΣR t					2,089	m²	K/W

		R si, R se	
	Koeffizient	Widerstand	
Wärmeübergangskoeffizient/widerstand innen	7,692	0,130	
Wärmeübergangskoeffizient/widerstand außen	25,000	0,040	
Summe der Wärmeübergangswiderstände R si + R s	se	0,170	m²K/W
Wärmedurchgangswiderstand RT = Rs	i + ΣR t + R se	2,259	m²K/W
Wärmedurchgangskoeffizient U = 1/R	Т	0,443	W/m²K

OIB Richtlinie 6:2015 (ON 2015)

U-Wert von opaken Bauteilen

Objekt	VerfasserIn der Unterlagen

Auftraggeber

Andreasgasse 6, 1070 Wien

Bauteilbezeichnung				Bauteil Nr.	
Trennwand				W3	
Bauteiltyp					-
Wand gg unbeheizte Gebäudete	ile			WGU	
Wärmedurchgangskoeffizient					1
U-Wert			0,61	W/m²K	
	erforderlich	≤	0,60	W/m²K]
					1

Kor	struktionsaufbau und Berechnung								
	Baustoffschichten	ID	Fläch	Be	d	λ	$R = d/\lambda$	ρ	ρ·d
	von außen nach innen		Flächenheizung	Bestand	Dicke	Leitfähigkeit	Durchlassw.	Dichte	Flächengew
Nr	Bezeichnung	kurz	zung	_	m	W/m K	m²K/W	kg/m³	kg/m²
1	Gipskartonplatten	WSK			0,0125	0,210	0,060	900,0	11,2
2	ISOVER PIANO Trennwandklemmfilz •				0,0500	0,040	1,250	12,5	0,6
3	Stahlbeton-Wand	WSK			0,1800	2,300	0,078	2.400,0	432,0
Dicl	ke des Bauteils				0,243				<u> </u>
Fläd	chenbezogene Masse des Bauteils								443,8
Sur	nme der Wärmedurchlasswiderstände	ΣRt					1,388	m²	K/W

		R si, R se	
	Koeffizient	Widerstand	
Wärmeübergangskoeffizient/widerstand innen	7,692	0,130	
Wärmeübergangskoeffizient/widerstand außen	7,692	0,130	
Summe der Wärmeübergangswiderstände R si + R se		0,260	m²K/W
Wärmedurchgangswiderstand $RT = R si + \Sigma R t + R se$		1,648	m²K/W
Wärmedurchgangskoeffizient U = 1/ R ⊤		0,607	W/m²K

M 1:10

OIB Richtlinie 6:2015 (ON 2015)

U-Wert von opaken Bauteilen

Objekt	VerfasserIn der Unterlagen
Andreasgasse 6, 1070 Wien	
Auftraggeber	

Bauteilbezeichnung Decke gegen unbeheizte Räume				Bauteil Nr. D7	0
					<u> </u>
Bauteiltyp Decke gg unbeheizte Gebäudetei	ile			DGUo	
Wärmedurchgangskoeffizient U-Wert			0,37	W/m²K	
	erforderlich	≤	0,40	W/m²K	
					U M 1:10

	Baustoffschichten	ID	Fläch	_D	d	λ	$R = d/\lambda$	ρ	ρ·d
	von außen nach innen		Flächenheizung	Bestand	Dicke	Leitfähigkeit	Durchlassw.	Dichte	Flächengew.
Nr	Bezeichnung	kurz	zung	_	m	W/m K	m²K/W	kg/m³	kg/m²
1	Tektalan E-31	baubook			0,0500	0,050	1,000	140,0	7,0
2	Stahlbeton-Decke	WSK			0,2500	2,300	0,109	2.400,0	600,0
3	ISOVER TDPT Trittschall-Dämmpl. •				0,0400	0,033	1,212	115,0	4,6
4	Polyethylen-Folie	WSK			0,0002	0,230	0,001	1.500,0	0,3
5	Estrich (Beton-)	WSK			0,0600	1,400	0,043	2.000,0	120,0
Dicl	ke des Bauteils				0,400				
	chenbezogene Masse des Bauteils				1 0,.00	1			731,9
	nme der Wärmedurchlasswiderstände	ΣRt					2,365	m²	K/W

		R si, R se	
	Koeffizient	Widerstand	
Wärmeübergangskoeffizient/widerstand innen	5,882	0,170	
Wärmeübergangskoeffizient/widerstand außen	5,882	0,170	
Summe der Wärmeübergangswiderstände R si + R se		0,340	m²K/W
Wärmedurchgangswiderstand $RT = R_{si} + \Sigma R_t + R_{se}$		2,705	m²K/W
Wärmedurchgangskoeffizient U = 1/ R ⊤		0,370	W/m²K

OIB Richtlinie 6:2015 (ON 2015)

U-Wert von opaken Bauteilen

Objekt	VerfasserIn der Unterlagen
Andreasgasse 6, 1070 Wien	
Auftraggeber	

Bauteilbezeichnung Decke gegen Gangbereiche				Bauteil Nr. D6		
					0	///////
Bauteiltyp Decke gg unbeheiztes Stiegenl	naus			DGS		
Wärmedurchgangskoeffizient U-Wert			0,59	W/m²K		
	erforderlich	≤	0,40	W/m²K	<u> </u>	
					U	M 1:10

	Baustoffschichten	ID	Fläch	В	d	λ	$R = d/\lambda$	ρ	ρ·d
	von außen nach innen		Flächenheizung	Bestand	Dicke	Leitfähigkeit	Durchlassw.	Dichte	Flächengew
٧r	Bezeichnung	kurz	zung		m	W/m K	m²K/W	kg/m³	kg/m²
1	Stahlbeton-Decke	WSK			0,2500	2,300	0,109	2.400,0	600,0
2	ISOVER TDPT Trittschall-Dämmpl. •				0,0400	0,033	1,212	115,0	4,6
3	Polyethylen-Folie	WSK			0,0002	0,230	0,001	1.500,0	0,3
4	Estrich (Beton-)	WSK			0,0600	1,400	0,043	2.000,0	120,0
Dicl	ke des Bauteils				0,350		· · · · · · · · · · · · · · · · · · ·		•
Fläd	chenbezogene Masse des Bauteils								724,9
Sur	nme der Wärmedurchlasswiderstände	ΣR t					1,365	m²	K/W

			R si, R se	
		Koeffizient	Widerstand	
Wärmeübergangskoeffizient/widerstand innen		5,882	0,170	
Wärmeübergangskoeffizient/widerstand außer	า	5,882	0,170	
Summe der Wärmeübergangswiderstände	R si + R se		0,340	m²K/W
Wärmedurchgangswiderstand	$RT = R si + \Sigma R t + R se$		1,705	m²K/W
Wärmedurchgangskoeffizient	U = 1/ R T		0,587	W/m²K

OIB Richtlinie 6:2015 (ON 2015) U-Wert von opaken Bauteilen								
Objekt Andreasgasse 6, 1070 Wien Auftraggeber				VerfasserIn de	er Unterlagen			
Bauteilbezeichnung Flachdach				Bauteil Nr. D13	0			
Bauteiltyp Außendecke				AD				
Wärmedurchgangskoeffizient U-Wert	erforderlich	≤	0,22	W/m²K W/m²K				
					U M 1:20			

Kor	nstruktionsaufbau und Berechnung								
	Baustoffschichten	ID	Fläch	В	d	λ	$R = d/\lambda$	ρ	$\rho \cdot d$
	von außen nach innen		Flächenheizung	Bestand	Dicke	Leitfähigkeit	Durchlassw.	Dichte	Flächengew
Nr	Bezeichnung	kurz	gung		m	W/m K	m²K/W	kg/m³	kg/m²
1	Styrodur 3035 CS 160 •				0,1600	0,038	4,211	33,0	5,2
2	bituminöse Abdichtungsbahn (5mm)	WSK			0,0050	0,170	0,029	1.200,0	6,0
3	bituminöse Abdichtungsbahn (5mm)	WSK			0,0050	0,170	0,029	1.200,0	6,0
4	bituminöse Abdichtungsbahn (5mm)	WSK			0,0050	0,170	0,029	1.200,0	6,0
5	Gefällebeton	WSK			0,0300	1,300	0,023	2.000,0	60,0
6	Stahlbeton-Decke	WSK			0,2500	2,300	0,109	2.400,0	600,0
7	Spachtelung	WSK			0,0050	1,400	0,004	2.100,0	10,5
Dic	ke des Bauteils				0,460				
Flä	chenbezogene Masse des Bauteils								693,7
Sur	nme der Wärmedurchlasswiderstände	ΣR t					4,434	m²	K/W

			R si, R se	
		Koeffizient	Widerstand	
Wärmeübergangskoeffizient/widerstand innen		10,000	0,100	
Wärmeübergangskoeffizient/widerstand außer	1	25,000	0,040	
Summe der Wärmeübergangswiderstände	R si + R se		0,140	m²K/W
Wärmedurchgangswiderstand	$RT = R si + \Sigma R t + R se$		4,574	m²K/W
Wärmedurchgangskoeffizient	U = 1/ R T		0,219	W/m²K

OIB Richtlinie 6:2015 (ON 2015)

U-Wert von zusammengesetzten Bauteilen

0-West von zusammengesetzten bautenen						
Objekt	VerfasserIn der Unterlagen					
Andreasgasse 6, 1070 Wien						
Auftraggeber						

Bauteilbezeichnung Blechdach					Bauteil Nr. D17
Bauteiltyp Außendecke					AD
Wärmedurchgangskoeffizient Wärmedurchgangswiderstand	U-Wert			0,2	6 W/m²K
Oberer Grenzwert	3,988	m²K/W			
Unterer Grenzwert	3,781	m²K/W	erforderlich	0,20) W/m²K

Teil eines zus	ammengesetzten Bauteiles		
Bauteilbezeichnung	9	Bauteil Nr.	
Blechdach		D17d	
Bauteiltyp			55555555
Außendecke		AD	
Wärmedurchgangs	skoeffizient	Anteil	
		85,00 %	
U-Wert	0,184 W/m²K	0,8500 -	
Bauteilbezeichnung	9	Bauteil Nr.	
Blechdach		D17h	
Bauteiltyp			
Außendecke		AD	
W ärmedurchgangskoeffizient		Anteil	
U-Wert	0,626 W/m²K	15,00 % 0,1500 -	

OIB Richtlinie 6:2015 (ON 2015)

U-Wert von opaken Bauteilen

Objekt	VerfasserIn der Unterlagen
Andreasgasse 6, 1070 Wien	
Auftraggeber	

Bauteilbezeichnung Blechdach				Bauteil Nr. D17d	0	
Schnitt 1: durch die Dämmung						
Bauteiltyp Außendecke				AD		
Wärmedurchgangskoeffizient U-Wert			0,18	W/m²K		
	erforderlich	≤	0,20	W/m²K		
						M 1.10
					U	M 1:10

	struktionsaufbau und Berechnung		П						
	Baustoffschichten	ID	läch	Be	d	λ	$R = d/\lambda$	ρ	ρ·d
	von außen nach innen		Flächenheizung	Bestand	Dicke	Leitfähigkeit	Durchlassw.	Dichte	Flächengew.
Nr	Bezeichnung	kurz	zung	_	m	W/m K	m²K/W	kg/m³	kg/m²
1	Vollholzschalung	WSK			0,0240	0,150	0,160	600,0	14,4
2	ISOVER Uniroll-Classic Klemmfilz •				0,2000	0,040	5,000	14,5	2,9
3	Polyethylen-Folie	WSK			0,0002	0,230	0,001	1.500,0	0,3
4	Gipskartonfeuerschutzplatten	WSK			0,0125	0,210	0,060	900,0	11,2
5	Gipskartonfeuerschutzplatten	WSK			0,0125	0,210	0,060	900,0	11,2
					0.040				
	ke des Bauteils				0,249				1
Fläd	chenbezogene Masse des Bauteils						1		40,1
Sun	nme der Wärmedurchlasswiderstände	ΣR t					5,281	m²	K/W

			R si, R se	
		Koeffizient	Widerstand	
Wärmeübergangskoeffizient/widerstand innen		10,000	0,100	
Wärmeübergangskoeffizient/widerstand außer	١	25,000	0,040	
Summe der Wärmeübergangswiderstände	R si + R se		0,140	m²K/W
Wärmedurchgangswiderstand	$RT = R si + \Sigma R t + R se$		5,421	m²K/W
Wärmedurchgangskoeffizient	U = 1/ R T		0,184	W/m²K

OIB Richtlinie 6:2015 (ON 2015)

U-Wert von opaken Bauteilen

Objekt	VerfasserIn der Unterlagen
Andreasgasse 6, 1070 Wien	
Auftraggeber	

Bauteilbezeichnung Blechdach Schnitt 2: durch das Holz				Bauteil Nr. D17h	0	
Bauteiltyp Außendecke				AD		
Wärmedurchgangskoeffizient U-Wert			0,63	W/m²K		
	erforderlich	≤	0,20	W/m²K		
					U	M 1:10

	Baustoffschichten	ID	Fläch	В	d	λ	$R = d/\lambda$	ρ	ρ·d
	von außen nach innen		Flächenheizung	Bestand	Dicke	Leitfähigkeit	Durchlassw.	Dichte	Flächengew.
٧r	Bezeichnung	kurz	zung		m	W/m K	m²K/W	kg/m³	kg/m²
1	Vollholzschalung	WSK			0,0240	0,150	0,160	600,0	14,4
2	Vollholzsparren	WSK			0,2000	0,170	1,176	700,0	140,0
3	Polyethylen-Folie	WSK			0,0002	0,230	0,001	1.500,0	0,3
4	Gipskartonfeuerschutzplatten	WSK			0,0125	0,210	0,060	900,0	11,2
5	Gipskartonfeuerschutzplatten	WSK			0,0125	0,210	0,060	900,0	11,2
Dicl	ke des Bauteils				0,249				
Fläd	chenbezogene Masse des Bauteils								177,2
Sur	nme der Wärmedurchlasswiderstände	ΣR t					1.457	m²	K/W

		R si, R se	
	Koeffizient	Widerstand	
Wärmeübergangskoeffizient/widerstand innen	10,000	0,100	
Wärmeübergangskoeffizient/widerstand außen	25,000	0,040	
Summe der Wärmeübergangswiderstände R si + R se		0,140	m²K/W
Wärmedurchgangswiderstand $R T = R si + \Sigma R t + R se$		1,597	m²K/W
Wärmedurchgangskoeffizient U = 1/ R ⊤		0,626	W/m²K

4.2 Fenster und Fenstertüren, transparente Bauteile

F1 Fenster und Fenstertüren Original saniert und späterer DG – Ausbau

Transparente Außenbauteile des späteren DG – Ausbau

Wärmedurchgangskoeffizient gemäß Pkt. 4.3.2 Gesamtenergiedurchlassgrad gemäß Pkt. 4.3.2

 $U = 1,60 \text{ W/m}^2\text{K}$ g = 0,60

4.3 Außentüren

AT1 <u>Außentüren nicht transparent Bestand</u>

Nicht transparente Außentüren des originalen Bauzustandes

Wärmedurchgangskoeffizient gemäß Pkt. 4.3.2

 $U = 1,90 \text{ W/m}^2\text{K}$

4.4 Innentüren

IT1 <u>Trenntüren nicht transparent Bestand</u>

Nicht transparente Trenntüren des originalen Bauzustandes

Wärmedurchgangskoeffizient gemäß Pkt. 4.3.2

 $U = 1,90 \text{ W/m}^2\text{K}$

5. Haustechniksystem

Für das vereinfachte Verfahren können in Abhängigkeit von Energieträger und der Wärmebereitstellung für Raumheizung und Warmwasser das Haustechniksystem aus Default-Systemen des Leitfaden Energietechnisches Verhalten von Gebäuden festgelegt werden.

Das für das gegenständliche Objekt zutreffende Heiztechniksystem entspricht dem Default-System 5:

Fernwärme (Systemtemperatur 70°C/55°C)

- Objektdaten:
 - o gebäudedezentrale Wärmebereitstellung, kombinierte Wärmebereitstellung für Warmwasser und Raumheizung, Warmwasserverteilung mit Zirkulationsleitung, Raumwärmeabgabe mit Radiatoren, Verteil- und Steigleitung im unkonditionierten Gebäudebereich, Stich- und Anbindeleitungen im konditionierten Gebäudebereich, Armaturen ungedämmt
- Warmwasser:
 - Wärmeabgabe: Zweigriffarmaturen
 - o Wärmeverteilung: ungedämmte Rohrleitungen
 - Wärmespeicherung: keine
 - Wärmebereitstellung: ----
- Raumheizung:
 - Wärmeabgabe: Heizkörper-Regulierventil (von Hand betätigt)
 - o Wärmeverteilung: ungedämmte Rohrleitungen
 - Wärmespeicherung: ----
 - Wärmebereitstellung: Fernwärme

6. Energiekennzahl JAHRES-HEIZWÄRMEBEDARF HWBBGF

Als Energiekennzahl (EKZ) ist der jährliche Heizwärmebedarf HWB_{BGF} in kWh/(m²a) maßgeblich.

Der Heizwärmebedarf HWB_{BGF} ist die auf die Brutto-Grundfläche BGF des beheizten Volumens V_B bezogene, durch die Berechnung ermittelte Wärmemenge, die im langjährigen Mittel einer Heizperiode den Räumen zuzuführen ist, um die Norm-Innentemperatur θ_i sicherzustellen.

Ermittlung des Bruttorauminhaltes und der Bauteilflächen

Die Berechnungen des beheizten Brutto-Volumens V_B und der Brutto-Grundflächen (BGF) und der Bauteilflächen aller beheizten Räume bzw. Gebäudeteile erfolgen gemäß der ÖNORM B 1800 durch Herausgreifen der entsprechenden Maße aus den angeführten Planunterlagen.

Berechnung des Jahres-Heizwärmebedarfes

Die Berechnung des Jahres-Heizwärmebedarfes HWB_{BGF} erfolgt nach dem Monatsbilanzverfahren gemäß den geltenden Vorschriften der OIB – Richtlinie 6 "Energieeinsparung und Wärmeschutz" unter Berücksichtigung des "Leitfaden Energietechnisches Verhalten von Gebäuden" und der einschlägigen ÖNORMEN B 8110-6, H 5056, H 5057, H 5058, H 5059 unter Verwendung der Klimadaten sowie der Nutzungsprofile gemäß ÖNORM B 8110-5 mit dem Programm ArchiPHYSIK Vers. 16.

Die Berechnung wird nach dem vereinfachten Verfahren für bestehende Gebäude nach Pkt. 4 des Leitfadens durchgeführt.

Energieausweis für Wohngebäude

OIB-Richtlinie 6 Ausgabe März 2015

BEZEICHNUNG	Andreasgasse 6, 1070 Wien	
Gebäude(-teil)	Wohnen	Baujahr
Nutzungsprofil	Mehrfamilienhäuser	Letzte Veränderung
Straße	Andreasgasse 6	Katastralgemeinde Neubau
PLZ/Ort	1070 Wien-Neubau	KG-Nr. 01010
Grundstücksnr.	502	Seehöhe 200 m

SPEZIFISCHER STANDORT-REFERENZ-HEIZWÄRMEBEDARF, STANDORT-PRIMÄRENERGIEBEDARF, STANDORT-KOHLENDIOXIDEMISSIONEN UND GESAMTENERGIEEFFIZIENZ-FAKTOR HWB Ref,SK PEB SK CO2 SK f GEE A ++ A + A + B C C D E F G

HWB_{Ref}: Der Referenz-Heizwärmebedarf ist jene Wärmemenge, die in den Räumen bereitgestellt werden muss, um diese auf einer normativ geforderten Raumtemperatur, ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten.

WWWB: Der **Warmwasserwärmebedarf** ist in Abhängigkeit der Gebäudekategorie als flächenbezogener Defaultwert festgelegt.

HEB: Beim Heizenergiebedarf werden zusätzlich zum Heiz- und Warmwasserwärmebedarf die Verluste des gebäudetechnischen Systems berücksichtigt, dazu zählen insbesondere die Verluste der Wärmebereitstellung, der Wärmeverteilung, der Wärmespeicherung und der Wärmeabgabe sowie allfälliger Hilfsenergie.

HHSB: Der **Haushaltsstrombedarf** ist als flächenbezogener Defaultwert festgelegt. Er entspricht in etwa dem durchschnittlichen flächenbezogenen Stromverbrauch eines österreichischen Haushalts.

EEB: Der **Endenergiebedarf** umfasst zusätzlich zum Heizenergiebedarf den Haushaltsstrombedarf, abzüglich allfälliger Endenergiebetrräge und zuzüglich eines dafür notwendigen Hilfsenergiebedarfs. Der Endenergiebedarf entspricht jener Energiemenge, die eingekauft werden muss (Lieferenergiebedarf).

fee: Der Gesamtenergieeffizienz-Faktor ist der Quotient aus dem Endenergiebedarf und einem Referenz-Endenergiebedarf (Anforderung 2007).

PEB: Der Primärenergiebedarf ist der Endenergiebedarf einschließlich der Verluste in allen Vorketten. Der Primärenergiebedarf weist einen erneuerbaren (PEB_{ern.}) und einen nicht erneuerbaren (PEB_{n.ern.}) Anteil auf.

CO₂: Gesamte den Endenergiebedarf zuzurechnende Kohlendioxidemissionen, einschließlich jener für Vorketten.

Alle Werte gelten unter der Annahme eines normierten BenutzerInnenverhaltens. Sie geben den Jahresbedarf pro Quadratmeter beheizter Brutto-Grundfläche an.

Dieser Energieausweis entspricht den Vorgaben der Richtlinie 6 "Energieeinsparung und Wärmeschutz" des Österreichischen Instituts für Bautechnik in Umsetzung der Richtlinie 2010/31/EU über die Gesamtenergieeffizienz von Gebäuden und des Energieausweis-Vorlage-Gesetzes (EAVG). Der Ermittlungszeitraum für die Konversionsfaktoren für Primärenergie und Kohlendioxidemissionen ist 2004 - 2008 (Strom: 2009 - 2013), und es wurden übliche Allokationsregeln unterstellt.

Energieausweis für Wohngebäude

OIB-Richtlinie 6

(iekali	DEKENNDATEN
OLDAU	

Brutto-Grundfläche	2.357,57 m ²	charakteristische Länge	2,00 m	mittlerer U-Wert	0,559 W/m²K
Bezugsfläche	1.886,05 m ²	Klimaregion	N	LEK _⊤ -Wert	41,96
Brutto-Volumen	7.308,09 m³	Heiztage	218 d	Art der Lüftung	Fensterlüftung
Gebäude-Hüllfläche	3.655,07 m ²	Heizgradtage	3491 Kd	Bauweise	mittelschwere
Kompaktheit (A/V)	0,50 1/m	Norm-Außentemperatur	-11,3 °C	Soll-Innentemperatur	20 °C

ANFORDERUNGEN (Referenzklima)	wonnen
-------------------------------	--------

Referenz-Heizwärmebedarf	k.A.	HWB Ref,RK	67,40	kWh/m²a
Heizwärmebedarf		HWB _{RK}	67,40	kWh/m²a
End-/Lieferenergiebedarf	k.A.	E/LEB _{RK}	181,08	kWh/m²a
Gesamtenergieeffizienz-Faktor	k.A.	f gee	1,851	
Erneuerbarer Anteil	k.A.			

WÄRME- UND ENERGIEBEDARF (Standortklima)

Referenz-Heizwärmebedarf	166.473	kWh/a	HWB Ref,SK	70,61	kWh/m²a
Heizwärmebedarf	163.694	kWh/a	HWB sk	69,43	kWh/m²a
Warmwasserwärmebedarf	30.117	kWh/a	WWWB	12,78	kWh/m²a
Heizenergiebedarf	407.275	kWh/a	HEB _{SK}	172,75	kWh/m²a
Energieaufwandszahl Heizen			e awz,h	2,10	
Haushaltsstrombedarf	38.723	kWh/a	HHSB	16,43	kWh/m²a
Endenergiebedarf	445.998	kWh/a	EEB sĸ	189,18	kWh/m²a
Primärenergiebedarf	693.093	kWh/a	PEB _{SK}	293,99	kWh/m²a
Primärenergiebedarf nicht erneuerbar	613.143	kWh/a	PEB n.ern.,SK	260,07	kWh/m²a
Primärenergiebedarf erneuerbar	79.950	kWh/a	PEB em.,SK	33,91	kWh/m²a
Kohlendioxidemissionen (optional)	129.202	kg/a	CO2 sk	54,80	kg/m²a
Gesamtenergieeffizienz-Faktor			f gee	1,874	
Photovoltaik-Export	0	kWh/a	PV Export,SK	0,00	kWh/m²a

ERSTELLT

GWR-Zahl		ErstellerIn	Bmstr. DiplIng. (FH) Markus Berger GmbH
Ausstellungsdatum	12.08.2019	Unterschrift	
Gültigkeitsdatum	11.08.2029		

Die Energiekennzahlen dieses Energieausweises dienen ausschließlich der Information. Aufgrund der idealisierten Eingangsparameter können bei tatsächlicher Nutzung erhebliche Abweichungen auftreten. Insbesondere Nutzungseinheiten unterschiedlicher Lage können aus Gründen der Geometrie und der Lage hinsichtlich ihrer Energiekennzahlen von der hier angegebenen abweichen.

Leitwerte 20

gegen Außen	Le	1.274,86	
über Unbeheizt	Lu	584,04	
über das Erdreich	Lg	0,00	
Leitwertzuschlag für linienformige und punktförmige Wärmebrücken	-	185,89	
Transmissionsleitwert der Gebäudehülle	LT	2.044,80	W/K
Lüftungsleitwert	LV	666,90	W/K
Mittlerer Wärmedurchgangskoeffizient	Um	0,559	W/m²

... gegen Außen, über Unbeheizt und das Erdreich

Bauteile gegen Außenluft

		m²	W/m²K	f	f FH	W/K
Nord						
Fen13	Fenster 2,50x2,50 - N - 8x	50,00	1,600	1,0		80,00
Fen18	Fenster 0,85x2,20 - N - 1x	1,87	1,600	1,0		2,99
Fen4	Fenster 2,50x2,10 - N - 2x	10,50	1,600	1,0		16,80
Fen5	Fenster 2,50x2,50 - N - 5x	31,25	1,600	1,0		50,00
Fen6	Fenster 0,60x1,90 - N - 4x	4,56	1,600	1,0		7,30
Fen7	Fenster 2,50x1,90 - N - 4x	19,00	1,600	1,0		30,40
W1	Außenwand	1.157,47	0,443	1,0		512,76
IT1	Wohnungseingangstüren 0,90x2,20 - 28x	55,44	1,900	0,7		73,74
W3	Trennwand	717,39	0,607	0,7		304,82
		2.047,49			1.	.078,81
Ost						
Fen11	Fenster 0,60x1,90 - O - 6x	6,84	1,600	1,0		10,94
Fen12	Fenster 2,50x2,50 - O - 9x	56,25	1,600	1,0		90,00
		63,09				100,94
Süd-Os	st .					
Fen8	Fenster 2,50x2,50 - SO - 4x	25,00	1,600	1,0		40,00
Fen9	Fenster 0,60x1,50 - SO - 4x	3,60	1,600	1,0		5,76
		28,60				45,76
Süd						
Fen10	Fenster 0,90x2,50 - S - 4x	9,00	1,600	1,0		14,40
Fen16	Fenster 0,85x2,20 - S - 1x	1,87	1,600	1,0		2,99
		10,87				17,39
West						
Fen1	Fenster 2,50x1,90 - W - 18x	85,50	1,600	1,0		136,80
Fen14	Fenster 2,35x2,20 - W - 1x	5,17	1,600	1,0		8,27
Fen15	Fenster 3,60x2,20 - W - 1x	7,92	1,600	1,0		12,67
Fen17	Fenster 0,85x2,20 - W - 30x	56,10	1,600	1,0		89,76
Fen2	Fenster 1,95x1,90 - W - 3x	11,13	1,600	1,0		17,81
Fen3	Fenster 1,10x1,90 - W - 3x	6,27	1,600	1,0		10,03
		172,09				275,34
Horizor	ntal					
D13	Flachdach	523,50	0,219	1,0		114,65
D17	Blechdach	79,88	0,257	1,0		20,53
D6	Decke gegen Gangbereiche	108,83	0,587	0,7		44,72

Andreasgasse 6, 1070 Wien - Wohnen

Horizontal

 D7
 Decke gegen unbeheizte Räume
 620,70
 0,370
 0,7
 160,76

 1.332,93
 340,66

Summe 3.655,07

... Leitwertzuschlag für linienformige und punktförmige Wärmebrücken

Leitwerte über Wärmebrücken

Wärmebrücken pauschal 185,89 W/K

... über Lüftung

Lüftungsleitwert

Fensterlüftung 666,90 W/K

Lüftungsvolumen $VL = 4.903,74 \text{ m}^3$ Luftwechselrate n = 0,40 1/h

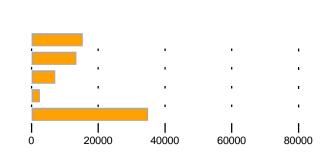
22

Wohnen

Wirksame Wärmespeicherfähigkeit der Zone

mittelschwere Bauweise

Interne Wärmegewinne

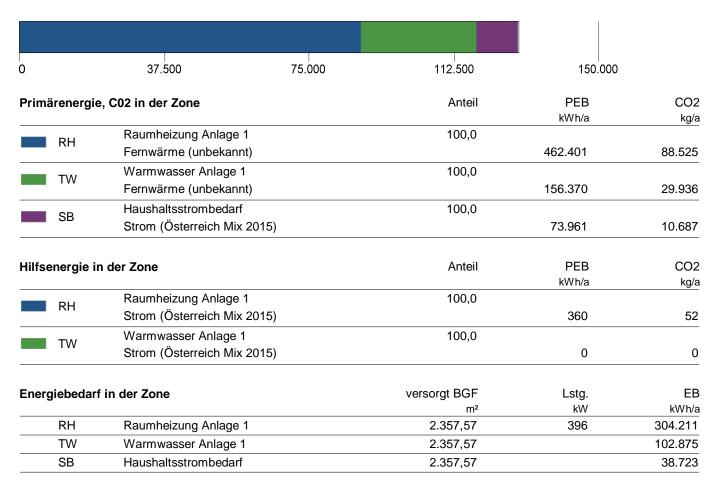

Mehrfamilienhäuser

qi = 3,75 W/m2

Solare Wärmegewinne

Transpare	ente Bauteile	Anzahl	Fs -	Summe Ag m2	g -	A trans,h m2
Nord						
Fen13	Fenster 2,50x2,50 - N - 8x	8	0,75	42,32	0,600	16,79
Fen18	Fenster 0,85x2,20 - N - 1x	1	0,75	1,30	0,600	0,51
Fen4	Fenster 2,50x2,10 - N - 2x	2	0,75	8,74	0,600	3,46
Fen5	Fenster 2,50x2,50 - N - 5x	5	0,75	26,45	0,600	10,49
Fen6	Fenster 0,60x1,90 - N - 4x	4	0,75	2,72	0,600	1,07
Fen7	Fenster 2,50x1,90 - N - 4x	4	0,75	15,64	0,600	6,20
		24		97,17		38,56
Ost						
Fen11	Fenster 0,60x1,90 - O - 6x	6	0,75	4,08	0,600	1,61
Fen12	Fenster 2,50x2,50 - O - 9x	9	0,75	47,61	0,600	18,89
		15		51,69		20,51
Süd-Os	st					
Fen8	Fenster 2,50x2,50 - SO - 4x	4	0,75	21,16	0,600	8,39
Fen9	Fenster 0,60x1,50 - SO - 4x	4	0,75	2,08	0,600	0,82
		8		23,24		9,22
Süd						
Fen10	Fenster 0,90x2,50 - S - 4x	4	0,75	6,44	0,600	2,55
Fen16	Fenster 0,85x2,20 - S - 1x	1	0,75	1,30	0,600	0,51
		5		7,74		3,07
West						
Fen1	Fenster 2,50x1,90 - W - 18x	18	0,75	70,38	0,600	27,93
Fen14	Fenster 2,35x2,20 - W - 1x	1	0,75	4,30	0,600	1,70
Fen15	Fenster 3,60x2,20 - W - 1x	1	0,75	6,80	0,600	2,69
Fen17	Fenster 0,85x2,20 - W - 30x	30	0,75	39,00	0,600	15,47
Fen2	Fenster 1,95x1,90 - W - 3x	3	0,75	8,93	0,600	3,54
Fen3	Fenster 1,10x1,90 - W - 3x	3	0,75	4,59	0,600	1,82
		56		134,00		53,18

	Aw	Qs, h
	m2	kWh/a
Nord	117,18	15.414
Ost	63,09	13.481
Süd-Ost	28,60	7.134
Süd	10,87	2.473
West	172,09	34.951
	391,83	73.456


Strahlungsintensitäten

Wien-Neubau, 200 m

·	S	SO/SW	O/W	NO/NW	N	Н
	kWh/m2	kWh/m2	kWh/m2	kWh/m2	kWh/m2	kWh/m2
Jan.	34,73	27,94	17,23	12,01	11,49	26,11
Feb.	55,55	45,58	29,91	20,89	19,46	47,48
Mär.	76,05	67,15	50,97	33,98	27,50	80,90
Apr.	80,75	79,59	69,21	51,91	40,37	115,36
Mai	89,89	94,62	91,46	72,54	56,77	157,70
Jun.	79,98	89,58	91,18	76,78	60,78	159,96
Jul.	81,94	91,59	93,19	75,52	59,45	160,68
Aug.	88,44	91,25	82,82	60,36	44,92	140,38
Sep.	81,45	74,58	59,86	43,17	35,32	98,13
Okt.	68,19	57,55	40,04	26,27	23,14	62,56
Nov.	38,35	30,57	18,45	12,68	12,11	28,84
Dez.	29,79	23,41	12,77	8,70	8,32	19,34

Wohnen

Nutzprofil: Mehrfamilienhäuser

Konversionsfaktoren

Konversionsfaktoren zur Ermittlung des PEB (f PE), des nichterneuerbaren Anteils des PEB (f PE,n.em.), des erneuerbaren Anteils des PEB (f PE,em.) sowie des CO2 (f co2).

and difficultivations does 1.25 (11 E.S.III.) down does does (1862).	f PE	f PE,n.ern.	f PE,ern.	f co2
	-	-	-	g/kWh
Fernwärme (unbekannt)	1,52	1,38	0,14	291
Strom (Österreich Mix 2015)	1,91	1,32	0,59	276

Raumheizung Anlage 1

Bereitstellung: RH-Wärmebereitstellung zentral, Defaultwert für Leistung (396,07 kW), Nah-/ Fernwärme oder sonstige Wärmetauscher, Sekundärkreis

Speicherung: kein Speicher

Verteilleitungen: Längen pauschal, nicht konditioniert, 0/3 gedämmt, Armaturen ungedämmt

Steigleitungen: Längen pauschal, nicht konditioniert, 0/3 gedämmt, Armaturen ungedämmt

Anbindeleitungen: Längen pauschal, 0/3 gedämmt, Armaturen ungedämmt

Abgabe: Heizkörper-Regulierventile von Hand betätigt, individuelle Wärmeverbrauchsermittlung, Heizkörper ($70 \, ^{\circ}\text{C}$ / $55 \, ^{\circ}\text{C}$)

	Verteilleitungen	Steigleitungen	Anbindeleitungen
Wohnen	0,00 m	0,00 m	1.320,24 m
unkonditioniert	98,03 m	188,60 m	

Warmwasser Anlage 1

Bereitstellung: WW- und RH-Wärmebereitstellung kombiniert, Raumheizung Anlage 1

Speicherung: Kein Warmwasserspeicher

Verteilleitungen: Längen pauschal, nicht konditioniert, 0/3 gedämmt, Armaturen ungedämmt Steigleitungen: Längen pauschal, nicht konditioniert, 0/3 gedämmt, Armaturen ungedämmt

Zirkulationsleitung: Ohne Zirkulation

Stichleitung: Längen pauschal, Kunststoff (Stichl.)

Abgabe: Zweigriffarmaturen, individuelle Wärmeverbrauchsermittlung

	Verteilleitungen	Steigleitungen	Stichleitungen
Wohnen	0,00 m	0,00 m	377,21 m
unkonditioniert	31,51 m	94,30 m	

Brutto-Grundfläche	BGF [m²]	V [m³]		
Wohnen	beheizt	2.357,57	7.308,09	
Wohnen				
beheizt				
	Formel	Höhe [m]	BGF [m²]	V [m³]
1. Obergeschoß				
1.OG	1 x 7,80*24,95+36,36*12,00+9,43*6, 95-0,5*3,38*6,95-1,40*17,90-2,8 5*5,30-4,50*5,30	3,24	620,70	2.011,09
2. Obergeschoß	,,			
2.OG	1 x 7,80*24,95+36,36*12,00+9,43*6, 95-0,5*3,38*6,95-1,40*17,90-2,8 5*5,30-4,50*5,30-1,40*15,30	2,87	599,28	1.719,95
3. Obergeschoß	, ,,,			
3.OG	1 x 7,80*24,95+36,36*12,00+9,43*6, 95-0,5*3,38*6,95-1,40*17,90-2,8 5*5,30-4,50*5,30-1,40*15,30	2,87	599,28	1.719,95
Dachgeschoß				
DG	1 x 7,80*24,95+36,36*12,00+9,43*6, 95-0,5*3,38*6,95-1,66*(9,70+10, 30)-3,93*7,60-2,85*6,41-2,10*(1 4,20+16,80)	3,45	538,28	1.857,08
Summe Wohnen			2.357,57	7.308,09

Bauteilflächen 27

		m	
Flächen der thermischen Gebäudehülle	3.655,07		
Opake Flächen	89,28 %	3.263,24	
Fensterflächen	10,72 %	391,83	
Wärmefluss nach oben		603,38	
Wärmefluss nach unten		729,54	

Flächen der thermischen Gebäudehülle

Wohnen				Mehrfamil	ienhäuser
D13	Flachdach				m² 523,50
	Fläche	Н	x+y	1 x 7,80*24,95+36,36*12,00+9,43*6,95- 0,5*3,38*6,95-1,66*(9,70+10,30)-3, 93*7,60-2,85*6,41-2,10*(14,20+16,8 0)- (5,80+4,70)*3,50-30,81*1,40+2,10*(14,20+16,80)	523,50
D17	Blechdach				m² 79,88
	Fläche	Н	х+у	1 x (5,80+4,70)*3,50+30,81*1,40	79,88
D6	Decke gegen Gangbereiche				m² 108,84
	Fläche	Н	х+у	1 x 1,40*15,30+1,40*(12,50+17,80)+1,6 6*(11,50+11,80)+1,40*2,05+1,52*2, 27	108,83
D7	Decke gegen unbeheizte Räume				m² 620,71
	Fläche	Н	х+у	1 x 7,80*24,95+36,36*12,00+9,43*6,95- 0,5*3,38*6,95-1,40*17,90-2,85*5,30 -4,50*5,30	620,70
Fen1	Fenster 2,50x1,90 - W - 18x	W		18 x 4,75	m² 85,50
					m²
Fen10	Fenster 0,90x2,50 - S - 4x	S		4 x 2,25	9,00
Fen11	Fenster 0,60x1,90 - O - 6x	0		6 x 1,14	m² 6,84

28

Fen12	Fenster 2,50x2,50 - O - 9x	0		9 x 6,25	m² 56,25
Tentz				3 x 0,23	30,23
Fam42	Foreston 2 50v:2 50 N 0v	N		0 v C 05	m²
Fen13	Fenster 2,50x2,50 - N - 8x	N		8 x 6,25	50,00
					m²
Fen14	Fenster 2,35x2,20 - W - 1x	W		1 x 5,17	5,17
					m²
Fen15	Fenster 3,60x2,20 - W - 1x	W		1 x 7,92	7,92
					m²
Fen16	Fenster 0,85x2,20 - S - 1x	S		1 x 1,87	1,87
					m²
Fen17	Fenster 0,85x2,20 - W - 30x	W		30 x 1,87	56,10
					m²
Fen18	Fenster 0,85x2,20 - N - 1x	N		1 x 1,87	1,87
					m²
Fen2	Fenster 1,95x1,90 - W - 3x	W		3 x 3,71	11,13
					m²
Fen3	Fenster 1,10x1,90 - W - 3x	W		3 x 2,09	6,27
					m²
Fen4	Fenster 2,50x2,10 - N - 2x	N		2 x 5,25	10,50
					m²
Fen5	Fenster 2,50x2,50 - N - 5x	N		5 x 6,25	31,25
					m²
Fen6	Fenster 0,60x1,90 - N - 4x	N		4 x 1,14	4,56
					m²
Fen7	Fenster 2,50x1,90 - N - 4x	N		4 x 4,75	19,00
					m²
Fen8	Fenster 2,50x2,50 - SO - 4x	SO		4 x 6,25	25,00
					m²
Fen9	Fenster 0,60x1,50 - SO - 4x	SO		4 x 0,90	3,60
					m²
IT1	Wohnungseingangstüren 0,90x2,20 - 28x Fläche	N	x+y	1 x 28*0,90*2,20	55,44 55,44
	i idollo	14	лту	1 7 20 0,00 2,20	55,44

Außenwand				m² 1.157,48
Fläche	N	x+y	1 x (24,95+41,31+2*2,20+18,19+6,80+	1.549,30
			1,08+7,50+11,76+9,28)*3,24+(24,95	
			+41,31+2*2,20+18,19+6,80+1,08+7	
			,50+11,76+9,28)*2,87+(24,95+41,31	
			+2*2,20+18,19+6,80+1,08+7,50+11,	
			76+9,28)*2,87+(24,95+41,31+2*2,2	
			0+18,19+9,20+6,80+1,08+9,28+7,8	
			0)*3,45	
Fensterabzug	N	x+y	1 x -391,83	-391,83
				m²
Trennwand				717,40
Fläche	N	х+у	1 x	772,83
			(1,40+15,05+1,40+13,40+2*5,30+2*	
			3,10)*3,24+(1,40*2+30,35+28,70+2	
			*5,30+2*3,10)*2,87+(1,40*2+30,35+	
			28,70+2*5,30+2*3,10)*2,87+(1,40+	
			4,00+9,70+2,27+1,70+5,97*2+3,27	
			+2,05+10,30+1,40)*3,45	
Abzug Wohnungseingangstüren	N	x+y	1 x -28*0,90*2,20	-55,44

7. Ergebins

Aus den durchgeführten Berechnungen entsprechend der OIB – Richtlinie 6 "Energieeinsparung und Wärmeschutz" unter Berücksichtigung des "Leitfaden Energietechnisches Verhalten von Gebäuden" geht hervor, dass das untersuchte Objekt unter Berücksichtigung der für die einzelnen Außenbauteile festgelegten bzw. ermittelten U-Werte und den aus den Grundlagenplänen ermittelten Bauteilflächen mit natürlicher Fensterlüftung folgenden Jahres-Heizwärmebedarf HWBBGF besitzt.

GESAMTGEBÄUDE

Jahres-Heizwärmebedarf des Bestandsgebäudes:

 $HWB_{Ref} = 67,4 \text{ kWh/m}^2\text{a}$

8. Empfehlungen zur thermischen Verbesserung

Das untersuchte Bestandsobjekt weist mit der Energieeffizienzklasse C eine mittlere thermische Gebäudequalität auf. Um die wärmetechnischen Eigenschaften insbesondere hinsichtlich der Energieeinsparung zu verbessern empfehlen wir nachfolgende Maßnahme im Zuge einer thermischen Sanierung durchzuführen.

- zusätzliche Dämmung der Außenwände
- Tausch der bestehenden Fenster auf hochwertige 3-fach Verglasungen
- zusätzliche Dämmung der Dachkonstruktion und der Terrassen
- sonstige bzw. weiterführende Maßnahmen

Die jeweiligen Dämmstoffstärken sind im Zuge einer Sanierung genau zu bestimmen, um den geltenden Bauvorschriften und Sanierungsvorschriften, auch im Hinblick auf eine eventuelle Förderung, zum Zeitpunkt der Sanierung Rechnung zu tragen.

Wien am 2019-08-19